L-Carnitine in Drosophila: A Review
L-Carnitine is an amino acid derivative that plays a key role in the metabolism of fatty acids,
including the shuttling of long-chain fatty acyl CoA to fuel mitochondrial β-oxidation. In addition,
L-carnitine reduces oxidative damage and plays an essential role in the maintenance of cellular energy
homeostasis. L-carnitine also plays an essential role in the control of cerebral functions, and the
aberrant regulation of genes involved in carnitine biosynthesis and mitochondrial carnitine transport in
Drosophila models has been linked to neurodegeneration. Drosophila models of neurodegenerative
diseases provide a powerful platform to both unravel the molecular pathways that contribute
to neurodegeneration and identify potential therapeutic targets. Drosophila can biosynthesize
L-carnitine, and its carnitine transport system is similar to the human transport system; moreover,
evidence from a defective Drosophila mutant for one of the carnitine shuttle genes supports the
hypothesis of the occurrence of β-oxidation in glial cells. Hence, Drosophila models could advance the
understanding of the links between L-carnitine and the development of neurodegenerative disorders.
This review summarizes the current knowledge on L-carnitine in Drosophila and discusses the role of
the L-carnitine pathway in fly models of neurodegeneration.
Bibliografia:
- McGarry, J.D.; Woeltje, K.F.; Kuwajima, M.; Foster, D.W. Regulation of ketogenesis and the renaissance of
carnitine palmitoyltransferase. Diabetes Metab. Rev. 1989, 5, 271–284.
- Bieber, L.L. Carnitine. Annu. Rev. Biochem. 1988, 57, 261–283.
- Ferdinandusse, S.; Mulders, J.; Ijlst, L.; Denis, S.; Dacremont, G.; Waterham, H.R.; Wanders, R.J.A. Molecular
cloning and expression of human carnitine octanoyltransferase: Evidence for its role in the peroxisomal
beta-oxidation of branched-chain fatty acids. Biochem. Biophys. Res. Commun. 1999, 263, 213–218.
- Clarke, P.R.H.; Bieber, L.L. Isolation and purification of mitochondrial carnitine octanoyltransferase activities
from beef heart. J. Biol. Chem. 1981, 256, 9861–9868.
- McGarry, J.D.; Brown, N.F. The mitochondrial carnitine palmitoyltransferase system. From concept to
molecular analysis. Eur. J. Biochem. 1997, 244, 1–14.
- Ramsay, R.R.; Gandour, R.D.; Van der Leij, F.R. Molecular enzymology of carnitine transfer and transport.
Biochim. Biophys. Acta 2001, 1546, 21–43.
- Console, L.; Giangregorio, N.; Indiveri, C.; Tonazzi, A. Carnitine/acylcarnitine translocase and carnitine
palmitoyltransferase 2 form a complex in the inner mi- tochondrial membrane. Mol. Cell. Biochem. 2014,
394, 307–314.
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta 2016,
1863, 2422–2435.
- Carter, A.L.; Abney, T.O.; Lapp, D.F. Biosynthesis and metabolism of carnitine. J. Child Neurol. 1995, 10 (Suppl. S2), S3–S7.
- Ramsay, R.R. The role of the carnitine system in peroxisomal fatty acid oxidation. Am. J. Med. Sci. 1999, 318, 28–35.
- Jakobs, B.S.; Wanders, R.J. Fatty acid β-oxidation in peroxisomes and mitochondria: The first, unequivocal
evidence for the involvement of carnitine in shuttling propionyl-CoA from peroxisomes to mitochondria.
Biochem. Biophys. Res. Commun. 1995, 213, 1035–1041.
- Verhoeven, N.M.; Roe, D.S.; Kok, R.M.; Wanders, R.J.; Jakobs, C.; Roe, C.R. Phytanic acid and pristanic acid
are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts. J. Lipid. Res.
1998, 39, 66–74.
- Bremer, J. Carnitine-metabolism and functions. Physiol. Rev. 1983, 63, 1420–1480.
- Houten, S.M.; Wanders, R.J. A general introduction to the biochemistry of mitochondrial fatty acid
beta-oxidation. J. Inherit. Metab. Dis. 2010, 33, 469–477.
- Duran, M.; Loof, N.E.; Ketting, D.; Dorland, L. Secondary carnitine deficiency. J. Clin. Chem. Clin. Biochem.
1990, 28, 359–363.
- Rebouche, C.J. Role of carnitine biosynthesis and renal conservation of carnitine in genetic and acquired
disorders of carnitine metabolism. In Carnitine: Pathobiochemical Basics and Clinical Applications; Seim, H.,
Loster, H., Eds.; Ponte Press: Bochum, Germany, 1996; pp. 111–121.
- Bene, J.; Hadzsiev, K.; Melegh, B. Role of carnitine and its derivatives in the development and management
of type 2 diabetes. Nutr. Diabetes 2018, 8, 8.
- Vaz, F.M.; Wanders, R.J.A. Carnitine biosynthesis in mammals. Biochem. J. 2002, 361, 417–429.
- Xu, Y.; Jiang, W.; Chen, G.; Zhu, W.; Ding, W.; Ge, Z.; Tan, Y.; Ma, T.; Cui, G. L-carnitine treatment of insulin
resistance: A systematic review and meta-analysis. Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. 2017,
26, 333–338.
- Pietrocola, F.; Galluzzi, L.; Pedro, J.M.B.-S.; Madeo, F.; Kroemer, G. Acetyl coenzyme A: A central metabolite
and second messenger. Cell Metab. 2015, 21, 805–821.
- Madiraju, P.; Pande, S.V.; Prentki, M.; Madiraju, S.R. Mitochondrial acetylcarnitine provides acetyl groups
for nuclear histone acetylation. Epigenetics 2009, 4, 399–403.
- Le Borgne, F.; Ravaut, G.; Bernard, A.; Demarquoy, J. L-carnitine protects C2C12 cells against mitochondrial
superoxide overproduction and cell death. World J. Biol. Chem. 2017, 8, 86–94.
- Surai, P.F. Antioxidant action of carnitine: Molecular mechanisms and practical applications. EC Vet. Sci.
2015, 2, 66–84.
- Ribas, G.S.; Vargas, C.R.; Wajner, M. L-Carnitine supplementation as a potential antioxidant therapy for
inherited neurometabolic disorders. Gene 2014, 533, 469–476.
- Komlósi, K.; Havasi, V.; Bene, J.; Süle, N.; Pajor, L.; Nicolai, R.; Benatti, P.; Calvani, M.; Melegh, B.
Histopathologic abnormalities of the lymphoreticular tissues in organic cation transporter 2 deficiency:
Evidence for impaired B cell maturation. J. Pediatr. 2007, 150, 109–111.e2.
- Demarquoy, J. L-Carnitine: Structure and Function. In eLS; John Wiley Sons Ltd.: Chichester, UK, 2011.
- Melone, M.A.B.; Valentino, A.; Margarucci, S.; Galderisi, U.; Giordano, A.; Peluso, G. The carnitine system
and cancer metabolic plasticity. Cell Death Dis. 2018, 9, 228.
- Qu, Q.; Zeng, F.; Liu, X.; Wang, Q.J.; Deng, F. Fatty acid oxidation and carnitine palmitoyltransferase I:
Emerging therapeutic targets in cancer. Cell Death Dis. 2016, 7, e2226.
- Tein, I. Disorders of fatty acid oxidation. Handb. Clin. Neurol. 2013, 113, 1675–1688.
- Jernberg, J.N.; Bowman, C.E.; Wolfgang, M.J.; Scafidi, S. Developmental regulation and localization of
carnitine palmitoyltransferases (CPTs) in rat brain. J. Neurochem. 2017, 142, 407–419.
- Juraszek, B.; Nałecz, K.A. SLC22A5 (OCTN2) Carnitine Transporter—Indispensable for Cell Metabolism,
a Jekyll and Hyde of Human Cancer. Molecules 2020, 25, 14.
- Lamhonwah, A.M.; Baric, I.; Lamhonwah, J.; Grubic, M.; Tein, I. Attention deficit/hyperactivity disorder as an
associated feature in OCTN2 deficiency with novel deletion (p.T440-Y449). Clin. Case Rep. 2018, 6, 585–591.
- Celestino-Soper, P.B.; Shaw, C.A.; Sanders, S.J.; Li, J.; Murtha, M.T.; Ercan-Sencicek, A.G.; Davis, L.;
Thomson, S.; Gambin, T.; Chinault, A.C. Use of array CGH to detect exonic copy number variants throughout
the genome in autism families detects a novel deletion in TMLHE. Hum. Mol. Genet. 2011, 20, 4360–4370.
- Celestino-Soper, P.B.; Violante, S.; Crawford, E.L.; Luo, R.; Lionel, A.C.; Delaby, E.; Cai, G.; Sadikovic, B.;
Lee, K.; Lo, C.; et al. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for
nondysmorphic autism. Proc. Natl. Acad. Sci. USA 2012, 109, 7974–7981.
- Ziats, M.N.; Comeaux, M.S.; Yang, Y.; Scaglia, F.; Elsea, S.H.; Sun, Q.; Beaudet, A.L.; Schaaf, C.P. Improvement
of regressive autism symptoms in a child with TMLHE deficiency following carnitine supplementation.
Am. J. Med. Genet. 2015, 167A, 2162–2167.
- Manzo, E.; O’Conner, A.G.; Barrows, J.M.; Shreiner, D.D.; Birchak, G.J.; Zarnescu, D.C. Medium-Chain
Fatty Acids, Beta-Hydroxybutyric Acid and Genetic Modulation of the Carnitine Shuttle Are Protective in a
Drosophila Model of ALS Based on TDP-43. Front. Mol. Neurosci. 2018, 11, 182.
- Laranjeira, A.; Schulz, J.; Dotti, C.G. Genes Related to Fatty Acid β-Oxidation Play a Role in the Functional
Decline of the Drosophila Brain with Age. PLoS ONE 2016, 11, e0161143.
- Di Cristo, F.; Finicelli, M.; Digilio, F.A.; Paladini, S.; Valentino, A.; Scialò, F.; D’Apolito, M.; Saturnino, C.;
Galderisi, U.; Giordano, A.; et al. Meldonim improves Huntington’s disease mitochondrial dysfunction by
restoring peroxisome proliferator-activated receptor gamma coactivator 1alpha expression. J. Cell. Physiol.
2019, 234, 9233–9246.
- Di Cristo, F.; Calarco, A.; Digilio, F.A.; Sinicropi, M.S.; Rosano, C.; Galderisi, U.; Melone, M.A.B.; Saturnino, C.;
Peluso, G. The Discovery of Highly Potent THP Derivatives as OCTN2 Inhibitors: From Structure-Based
Virtual Screening to In Vivo Biological Activity. Int. J. Mol. Sci. 2020, 21, 7431.
- Ugur, B.; Chen, K.; Bellen, H.J. Drosophila tools and assays for the study of human diseases. Dis. Models Mech.
2016, 9, 235–244.
- Reiter, L.T.; Potocki, L.; Chien, S.; Gribskov, M.; Bier, E. A systematic analysis of human disease-associated
gene sequences in Drosophila melanogaster. Genome Res. 2001, 11, 1114–1125.
- Reiter, L.T.; Bier, E. Using Drosophila melanogaster to uncover human disease gene function and potential
drug target proteins. Expert Opin. Ther. Targets 2002, 6, 387–399.
- McGurk, L.; Berson, A.; Bonini, N.M. Drosophila as an In Vivo Model for Human Neurodegenerative Disease.
Genetics 2015, 1, 377–402.
- Pandey, U.B.; Nichols, C.D. Human Disease Models in Drosophila melanogaster and the Role of the Fly in
Therapeutic Drug Discovery. Pharmacol. Rev. 2011, 3, 411–436.
- Tanphaichitr, V.; Horne, D.W.; Broquist, H.P. Lysine, a precursor of carnitine in the rat. J. Biol. Chem. 1971,
246, 6364–6366.
- Horne, D.W.; Broquist, H.P. Role of lysine and ε-N-trimethyllysine in carnitine biosynthesis. Studies in
Neurospora crassa. J. Biol. Chem. 1973, 248, 2170–2175.
- Tanphaichitr, V.; Broquist, H.P. Role of lysine and ε-N-trimethyllysine in carnitine biosynthesis. Studies in
the rat. J. Biol. Chem. 1973, 248, 2176–2181.
- Paik, W.K.; Kim, S. Protein methylation. Science 1971, 174, 114–119.
- Paik, W.K.; Kim, S. Protein methylation: Chemical, enzymological, biological significance. Adv. Enzymol.
Relat. Areas Mol. Biol. 1975, 42, 227–286.
- Huszar, G. Tissue-specific biosynthesis of ε-N-monomethyllysine and ε-N-trimethyllysine in skeletal and
cardiac muscle myosin: A model for the cell-free study of post-translational amino acid modifications in
proteins. J. Mol. Biol. 1975, 94, 311–326.
- Morse, R.K.; Vergnes, J.P.; Malloy, J.; McManus, I.R. Sites of biological methylation of proteins in cultured
chick muscle cells. Biochemistry 1975, 14, 4316–4325.
- Labadie, J.; Dunn, W.A.; Aronson, N.N. Hepatic synthesis of carnitine from protein-bound trimethyllysine.
Lysoso- mal digestion of methyl-lysine-labeled asialo-fetuin. Biochem. J. 1976, 160, 85–95.
- Vaz, F.M.; van Gool, S.; Ofman, R.; Ijlst, L.; Wanders, R.J. Carnitine biosynthesis: Identification of the
cDNA encoding human γ-butyrobetaine hydroxylase. Biochem. Biophys. Res. Commun. 1998, 250, 506–510.
- Strijbis, K.; Vaz, F.M.; Distel, B. Enzymology of the carnitine biosynthesis pathway. IUBMB Life 2010,
62, 357–362.
- Galland, S.; Le Borgne, F.; Bouchard, F.; Georges, B.; Clouet, P.; Grand-Jean, F.; Demarquoy, J. Molecular cloning
and characterization of the cDNA encoding the rat liver γ-butyrobetaine hydroxylase. Biochim. Biophys. Acta
1999, 1441, 85–92.
- Vaz, F.M.; Fouchier, S.W.; Ofman, R.; Sommer, M.; Wanders, R.J. Molecular and biochemical characterization
of rat γ-trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde
dehydrogenase 9 in carnitine biosynthesis. J. Biol. Chem. 2000, 275, 7390–7394.
- Vaz, F.M.; Ofman, R.; Westinga, K.; Wanders, R.J. Molecular and biochemical characterization of rat
ε-N-trimethyllysine hydroxylase, the first enzyme of carnitine biosynthesis. J. Biol. Chem. 2001, 276, 33512–33517.
- Strijbis, K.; Van Roermund, C.W.; Hardy, G.P.; Van Den Burg, J.; Bloem, K.; De Haan, J.; Van Vlies, N.;
Wanders, R.J.; Vaz, F.M.; Distel, B. Identification and characterization of a complete carnitine biosynthesis
pathway in Candida albicans. FASEB J. 2009, 23, 2349–2359.
- McNeil, J.B.; Flynn, J.; Tsao, N.; Monschau, N.; Stahmann, K.; Haynes, R.H.; Mcintosh, E.M.; Pearlman, R.E.
Glycine metabolism in Candida albicans: Characterization of the serine hydroxymethyltrans- ferase (SHM1,
SHM2) and threonine aldolase (GLY1) genes. Yeast 2000, 16, 167–175.
- Edgar, A.J. Mice have a transcribed L-threonine aldolase/GLY1 gene, but the human GLY1 gene is a
non-processed pseudogene. BMC Genom. 2005, 6, 32.
- Rebouche, C.J.; Engel, A.G. Tissue distribution of carnitine biosynthetic enzymes in man. Biochim. Biophys. Acta.
1980, 630, 22–29.
- Ogawa, H.; Gomi, T.; Fujioka, M. Serine hydroxymethyl- transferase and threonine aldolase: Are they
identical? Int. J. Biochem. Cell. Biol. 2000, 32, 289–301.
- Contestabile, R.; Paiardini, A.; Pascarella, S.; Di Salvo, M.L.; D’aguanno, S.; Bossa, F. L-Threonine aldolase,
serine hydroxymethyltransferase and fungal alanine racemase. A subgroup of strictly related enzymes
specialized for different functions. Eur. J. Bio-Chem. 2001, 268, 6508–6525.
- Hulse, J.D.; Henderson, L.M. Carnitine biosynthesis. Purification of 4-Nh-trimethylaminobutyraldehyde
dehydrogenase from beef liver. J. Biol. Chem. 1980, 255, 1146–1151.
- Lin, S.W.; Chen, J.C.; Hsu, L.C.; Hsieh, C.L.; Yoshida, A. Human γ-aminobutyraldehyde dehydrogenase
(ALDH9): cDNA sequence, genomic organization, polymorphism, chromosomal localization, and tissue
expression. Genomics 1996, 34, 376–380.
- Kurys, G.; Shah, P.C.; Kikonygo, A.; Reed, D.; Ambroziak, W.; Pietruszko, R. Human aldehyde dehydrogenase.
cDNA cloning and primary structure of the enzyme that catalyzes dehydrogenation of 4-aminobutyraldehyde.
Eur. J. Biochem. 1993, 218, 311–320.
- Englard, S.; Blanchard, J.S.; Midelfort, C.F. γ-Butyrobetaine hydroxylase: Stereochemical course of the
hydroxylation reaction. Biochemistry 1985, 24, 1110–1116.
- Lindstedt, G.; Lindstedt, S.; Nordin, I. γ-Butyrobetaine hydroxylase in human kidney. Scand. J. Clin.
Lab. Investig. 1982, 42, 477–485.
- Roe, C.; Ding, J. Mitochondrial fatty acid oxidation disorders. In The Metabolic and Molecular Bases of
Inherited Disease; Scriver, C., Beaudet, A., Sly, W., Valle, D., Eds.; McGraw-Hill: New York, NY, USA, 2001;
pp. 2297–2326.
- Drosatos, K.; Schulze, P.C. Cardiac lipotoxicity: Molecular pathways and therapeutic implications. Curr. Heart
Fail. Rep. 2013, 10, 109–121.
- Schrader, M.; Costello, J.; Godinho, L.F.; Islinger, M. Peroxisome-mitochondria interplay and disease. J. Inherit.
Metab. Dis. 2015, 38, 681–702.
- Wanders, R.J. Peroxisomes in human health and disease: Metabolic pathways, metabolite transport,
interplay with other organelles and signal transduction. Subcell. Biochem. 2013, 69, 23–44.
- Wanders, R.J. Metabolic functions of peroxisomes in health and disease. Biochimie 2014, 98, 36–44.
- Wanders, R.J.; Ferdinandusse, S.; Brites, P.; Kemp, S. Peroxisomes, lipid metabolism and lipotoxicity. Biochim.
Biophys. Acta. 2010, 1801, 272–280.
- Le Borgne, F.; Ben Mohamed, A.; Logerot, M.; Garnier, E.; Demarquoy, J. Changes in carnitine
octanoyltransferase activity induce alteration in fatty acid metabolism. Biochem. Biophys. Res. Commun. 2011,
409, 699–704.
- Watkins, P.A.; Maiguel, D.; Jia, Z.; Pevsner, J. Evidence for 26 distinct acyl-coenzyme A synthetase genes in
the human genome. J. Lipid Res. 2007, 48, 2736–2750.
- Zammit, V.A. Carnitine palmitoyltransferase 1: Central to cell function. IUBMB Life 2008, 60, 347–354.
- Rufer, A.C.; Thoma, R.; Hennig, M. Structural insight into function and regulation of carnitine
palmitoyltransferase. Cell. Mol. Life Sci. CMLS 2009, 66, 2489–2501.
- Cordente, A.G.; Lopez-Vinas, E.; Vazquez, M.I.; Swiegers, J.H.; Pretorius, I.S.; Gomez-Puertas, P.; Hegardt, F.G.;
Asins, G.; Serra, D. Redesign of carnitine acetyltransferase specificity by protein engineering. J. Biolchem.
2004, 279, 33899–33908.
- Esser, V.; Brown, N.F.; Cowan, A.T.; Foster, D.W.; McGarry, J.D. Expression of a cDNA isolated from rat brown
adipose tissue and heart identifies the product as the muscle isoform of carnitine palmi- toyltransferase I
(M-CPT I): M-CPT I is the predominant CPT I isoform expressed in both white (epididymal) and brown
adipocytes. J. Biol. Chem. 1996, 271, 6972.
- Yamazaki, N.; Shinohara, Y.; Shima, A.; Terada, H. High expression of a novel carnitine palmitoyltransferase-I
like protein in rat brown adipose-tissue and heart isolation and characterization of its cDNA clone. FEBS Lett.
1995, 363, 41–45.
- Price, N.; van der Leij, F.; Jackson, V.; Corstorphine, C.; Thomson, R.; Sorensen, A.; Zammit, V. A novel
brain-expressed protein related to carnitine palmitoyltransferase I. Genomics 2002, 80, 433–442.
- Lopes-Marques, M.; Delgado, I.L.S.; Ruivo, R.; Torres, Y.; Sainath, S.B.; Rocha, E.; Cunha, I.; Santos, M.M.;
Castro, L.F.C. The origin and diversity of Cpt1 genes in vertebrate species. PLoS ONE 2015, 10, 3–5.
- Van der Hoeck, M.D.; Madsen, O.; Keijer, J.; van der Leij, F.R. Evolutionary analysis of the carnitine- and
choline acyltransferases suggests distinct evolution of CPT2 versus CPT1 and related variants. BBA Mol. Cell
Biol. Lipids 2018, 1863, 909–918.
- Sierra, A.Y.; Gratacos, E.; Carrasco, P.; Clotet, J.; Urena, J.; Serra, D.; Asins, G.; Hegardt, F.G.; Casals, N. CPT1c
is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity. J. Biol. Chem.
2008, 283, 6878–6885.
- Jackson, V.N.; Cameron, J.M.; Zammit, V.A.; Price, N.T. Sequencing and functional expression of the
malonyl-CoA-sensitive carnitine palmitoyltransferase from Drosophila melanogaster. Biochem. J. 1999,
341, 483–489.
- Strub, B.R.; Parkes, T.L.; Mukai, S.T.; Bahadorani, S.; Coulthard, A.B.; Hall, N.; Phillips, J.P.; Hilliker, A.J.
Mutations of the withered (whd) gene in Drosophila melanogaster confer hypersensitivity to oxidative stress
and are lesions of the carnitine palmitoyltransferase I (CPT I) gene. Genome 2008, 51, 409–420.
- Rasmussen, B.B.; Holmbäck, U.C.; Volpi, E.; Morio-Liondore, B.; Paddon-Jones, D.; Wolfe, R.R. Malonyl
coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in
human skeletal muscle. J. Clin. Investig. 2002, 110, 1687–1693.
- Olpin, S.E.; Allen, J.; Bonham, J.R.; Clark, S.; Clayton, P.T.; Calvin, J.; Downing, M.; Ives, K.; Jones, S.;
Manning, N.J.; et al. Features of carnitine palmitoyltransferase type I deficiency. J. Inherit. Metab. Dis. 2001,
24, 35–42.
- Arockia Rani, J.P.; Panneerselvam, C. Carnitine as a free radical scavenger in aging. Exp. Gerontol. 2001,
36, 1713–1726.
- Indiveri, C.; Tonazzi, A.; Palmieri, F. Identification and purification of the carnitine carrier from rat liver
mitochondria. Biochim. Biophys. Acta 1990, 1020, 81–86.
- Indiveri, C.; Iacobazzi, V.; Tonazzi, A.; Giangregorio, N.; Infantino, V.; Convertini, P.; Console, L.; Palmieri, F.
The mitochondrial carnitine/acylcarnitine carrier: Function, structure and physiopathology. Mol. Asp. Med.
2011, 32, 223–233.
- Oey, N.A.; Ijlst, L.; van Roermund, C.W.T.; Wijburg, F.A.; Wanders, R.J.A. dif-1 and colt, both implicated
in early embryonic development, encode carnitine acylcarnitine translocase. Mol. Genet. Metab. 2005,
85, 121–124.
- Hartenstein, K.; Sinha, P.; Mishra, A.; Schenkel, H.; Torok, I.; Mechler, B.M. The congested-like tracheae gene
of Drosophila melanogaster encodes a member of the mitochondrial carrier family required for gas-Wlling
of the tracheal system and expansion of the wings after eclosion. Genetics 1997, 147, 1755–1768.
- Schulz, J.G.; Laranjeira, A.; Van Huffel, L.; Gärtner, A.; Vilain, S.; Bastianen, J.; Van Veldhoven, P.P.; Dotti, C.G.
Glial β-oxidation regulates Drosophila energy metabolism. Sci. Rep. 2015, 5, 7805.
- North, K.N.; Hoppel, C.L.; De Girolami, U.; Kozakewich, H.P.; Korson, M.S. Lethal neonatal deficiency
of carnitine palmitoyltransferase II associated with dysgenesis of the brain and kidneys. J. Pediatr. 1995,
127, 414–420.
- Pierce, M.R.; Pridjian, G.; Morrison, S.; Pickoff, A.S. Fatal carnitine palmitoyltransferase II deficiency in a
newborn: New phenotypic features. Clin. Pediatr. (Phila.) 1999, 38, 13–20.
- Hug, G.; Bove, K.E.; Soukup, S. Lethal neonatal multiorgan deficiency of carnitine palmitoyltransferase II.
N. Engl. J. Med. 1991, 325, 1862–1864.
- Taroni, F.; Verderio, E.; Fiorucci, S.; Cavadini, P.; Finocchiaro, G.; Uziel, G.; Lamantea, E.; Gellera, C.;
DiDonato, S. Molecular characterization of inherited carnitine palmitoyltransferase II deficiency. Proc. Natl.
Acad. Sci. USA 1992, 89, 8429–8433.
- Clarke, D.; Sokoloff, L. Circulation and Energy Metabolism of the Brain. In Basic Neurochemistry: Molecular,
Cellular and Medical Aspects, 6th ed.; Agranoff, B., Albers, R.W., Fisher, S.K., Uhler, M.D., Eds.; Lipincott-Raven:
Philadelphia, PA, USA, 1999; Chapter 31.
- Nunnari, J.; Suomalainen, A. Mitochondria: In sickness and in health. Cell 2012, 148, 1145–1159.
- Wanders, R.J.A.; Waterham, H.R.; Ferdinandusse, S. Metabolic Interplay between Peroxisomes and Other
Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum. Front. Cell Dev. Biol. 2016,
3, 83.
- Violante, S.; Ijlst, L.; Te Brinke, H.; Koster, J.; de Almeida, I.T.; Wanders, R.J.; Ventura, F.V.;
Houten, S.M. Peroxisomes contribute to the acylcarnitine production when the carnitine shuttle is deficient.
Biochim. Biophys. Acta 2013, 1831, 1467–1474.
- Theodoulou, F.L.; Holdsworth, M.; Baker, A. Peroxisomal ABC transporters. FEBS Lett. 2006, 580, 1139–1155.
- Chen, H.; Liu, Z.; Huang, X. Drosophila models of peroxisomal biogenesis disorder: Peroxins are required for
spermatogenesis and very-long-chain fatty acid metabolism. Hum. Mol. Genet. 2010, 19, 494–505.
- Nakayama, M.; Sato, H.; Okuda, T.; Fujisawa, N.; Kono, N.; Arai, H.; Suzuki, E.; Umeda, M.; Ishikawa, H.O.;
Matsuno, K. Drosophila carrying pex3 or pex16 mutations are models of zellweger syndrome that reflect its
symptoms associated with the absence of peroxisomes. PLoS ONE 2011, 6, e22984.
- Faust, J.E.; Verma, A.; Peng, C.; McNew, J.A. An inventory of peroxisomal proteins and pathways in
Drosophila melanogaster. Traffic 2012, 13, 1378–1392.
- Ahn, S.Y.; Jamshidi, N.; Mo, M.L.; Wu, W.; Eraly, S.A.; Dnyanmote, A.; Bush, K.T.; Gallegos, T.F.; Sweet, D.H.;
Palsson, B.Ø.; et al. Linkage of organic anion transporter-1 to metabolic pathways through integrated
“omics”-driven network and functional analysis. J. Biol. Chem. 2011, 286, 31522–31531.
- Zhu, C.; Nigam, K.B.; Date, R.C.; Bush, K.T.; Springer, S.A.; Saier, M.H.; Wu, W.; Nigam, S.K. Evolutionary
Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function
Implications and Analysis of Sequence Motifs. PLoS ONE 2015, 10, e0140569.
- Han, Y.; Xiong, L.; Xu, Y.; Tian, T.; Wang, T. The -alanine transporter BalaT is required for visual
neurotransmission in Drosophila. eLife 2017, 6, e29146.
- Stenesen, E.; Moehlman, A.; Krämer, H. The carcinine transporter CarT is required in Drosophila photoreceptor
neurons to sustain histamine recycling. eLife 2015, 4, e10972.
- Gai, Y.; Liu, Z.; Cervantes-Sandoval, I.; Davis, R.L. Drosophila SLC22A Transporter Is a Memory Suppressor
Gene that Influences Cholinergic Neurotransmission to the Mushroom Bodies. Neuron 2016, 90, 581–595.
- Eraly, S.A.; Monte, J.C.; Nigam, S. Novel slc22 transporter homologs in fly, worm, and human clarify the
phylogeny of organic anion and cation transporters. Physiol. Genom. 2004, 18, 12–24.
- Engelhart, D.C.; Azad, P.; Ali, S.; Granados, J.C.; Haddad, G.G.; Nigam, S.K. Drosophila SLC22 Orthologs
Related to OATs, OCTs, and OCTNs Regulate Development and Responsiveness to Oxidative Stress. Int. J.
Mol. Sci. 2020, 21, 2002.
- Enomoto, A.; Wempe, M.; Tsuchida, H.; Shin, H.J.; Cha, S.H.; Anzai, N.; Goto, A.; Sakamoto, A.; Niwa, T.;
Kanai, Y.; et al. Molecular Identification of a Novel Carnitine Transporter Specific to Human Testis.
J. Biol. Chem. 2002, 277, 36262–36271.
- Chintapalli, V.R.; Wang, J.; Dow, J.A.T. Using FlyAtlas to identify better Drosophila melanogaster models of
human disease. Nat. Genet. 2007, 39, 715–720.
- Geer, B.W.; Vovis, G.F. The effects of choline and related compounds on the growth and development of
Drosophila melanogaster. J. Exp. Zool. 1965, 158, 223–236.
- Gülçin, I. Antioxidant and antiradical activities of L-carnitine. Life Sci. 2006, 78, 803–811.
- Augustyniak, A.; Skrzydlewska, E. The Influence of L-carnitine Supplementation on the Antioxidative
Abilities of Serum and the Central Nervous System of Ethanol-Induced Rats. Metab. Brain Dis. 2010,
25, 381–389.
- Wang, H.L.; Sun, Z.O.; Rehman, R.U.; Wang, H.; Wang, Y.F.; Wang, H. Rosemary Extract-Mediated Lifespan
Extension and Attenuated Oxidative Damage in Drosophila melanogaster Fed on High-Fat Diet. J. Food Sci.
2017, 82, 1006–1011.
- Pignatelli, P.; Lenti, L.; Sanguigni, V.; Frati, G.; Simeoni, I.; Gazzaniga, P.P.; Pulcinelli, F.M.; Violi, F. Carnitine
inhibits arachidonic acid turnover, platelet function, and oxidative stress. Am. J. Physiol. Heart Circ. Physiol.
2003, 284, H41–H48.
- Chaves, M.M.; Rodrigues, A.L.P.; dos Reis, A.P.; Gerzstein, N.C.; Nogueira-Machado, J.A. Correlation
between NADPH oxidase and protein kinase C in the ROS production by human granulocytes related to age.
Gerontology 2002, 48, 354–359.
- Cao, Y.; Qu, H.J.; Li, P.; Wang, C.B.; Wang, L.X.; Han, Z.W. Single dose administration of L-carnitine improves
antioxidant activities in healthy subjects. Tohoku J. Exp. Med. 2011, 224, 209–213.
- Li, J.L.; Wang, Q.Y.; Luan, H.Y.; Kang, Z.C.; Wang, C.B. Effects of L-carnitine against oxidative stress in
human hepatocytes: Involvement of peroxisome proliferator-activated receptor alpha. J. Biomed. Sci. 2012,
19, 32.
- Li, J.; Zhang, Y.; Luan, H.; Chen, X.; Han, Y.; Wang, C. L-carnitine protects human hepatocytes from oxidative
stress-induced toxicity through Akt-mediated activation of Nrf2 signaling pathway. Can. J. Physiol. Pharmacol.
2016, 94, 517–525.
- Surai, P.F. Carnitine Enigma: From Antioxidant Action to Vitagene Regulation Part 1. Absorption, Metabolism,
and Antioxidant Activities. J. Veter Sci. Med. 2015, 3, 14.
- Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases.
Neural Regen. Res. 2013, 8, 2003–2014.
- Kumaran, S.; Subathra, M.; Balu, M.; Panneerselvam, C. Age-associated decreased activities of mitochondrial
electron transport chain complexes in heart and skeletal muscle: Role of L-carnitine. Chem. Biol. Interact.
2004, 148, 11–18.
- Reznick, A.Z.; Kagan, V.E.; Ramsey, R.; Tsuchiya, M.; Khwaja, S.; Serbinova, E.A.; Packer, L. Antiradical
effects in L-propionyl carnitine protection of the heart against ischemia-reperfusion injury: The possible role
of iron chelation. Arch. Biochem. Biophys. 1992, 296, 394–401.
- Manoharan, S.; Guillemin, G.J.; Abiramasundari, R.S.; Essa, M.M.; Akbar, M.; Akbar, M.D. The Role of
Reactive Oxygen Species in the Pathogenesis of Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s
Disease: A Mini Review. Oxid. Med. Cell Longev. 2016, 2016, 8590578.
- Sanz, F.J.; Solana-Manrique, C.; Muñoz-Soriano, V.; Calap-Quintana, P.; Moltó, M.D.; Paricio, N. Identification
of potential therapeutic compounds for Parkinson’s disease using Drosophila and human cell models. Free
Radic. Biol. Med. 2017, 108, 683–691.
- Krishna, G.; Muralidhara, S. Aqueous extract of tomato seeds attenuates rotenone-induced oxidative stress
and neurotoxicity in Drosophila melanogaster. J. Sci. Food Agric. 2016, 96, 1745–1755.
- Zhou, Y.; Xue, L.; Gao, L.; Qin, X.; Du, G. Ginger extract extends the lifespan of Drosophila melanogaster through
antioxidation and ameliorating metabolic dysfunction. J. Functional Food. 2018, 49, 295–305.
- Knottnerus, S.J.G.; Bleeker, J.C.; Wüst, R.C.I.; Ferdinandusse, S.; IJlst, L.; Wijburg, F.A.; Wanders, R.J.A.;
Visser, G.; Houtkooper, R.H. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine
shuttle. Rev. Endocr. Metab. Disord. Mar. 2018, 19, 93–106.
- Houten, S.M.; Violante, S.; Ventura, F.V.; Wanders, R.J.A. The Biochemistry and Physiology of Mitochondrial
Fatty Acid β-Oxidation and Its Genetic Disorders. Annu. Rev. Physiol. 2016, 78, 23–44.
- Almannai, M.; Alfadhel, M.; El-Hattab, A.W. Carnitine inborn errors of metabolism. Molecules 2019, 24, 3251.
- Nehlig, A.; de Vasconcelos, A.P. Glucose and ketone body utilization by the brain of neonatal rats.
Prog. Neurobiol. 1993, 40, 163–221.
- Patel, A.B.; Lai, J.C.; Chowdhury, G.M.; Hyder, F.; Rothman, D.L.; Shulman, R.G.; Behar, K.L. Direct evidence
for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron
lactate shuttle. Proc. Natl. Acad. Sci. USA 2014, 111, 5385–5390.
- Ebert, D.; Haller, R.G.; Walton, M.E. Energy contribution of octanoate to intact rat brain metabolism measured
by 13C nuclear magnetic resonance spectroscopy. J. Neurosci. 2003, 23, 5928–5935.
- Schonfeld, P.; Reiser, G. Why does brain metabolism not favor burning of fatty acids to provide energy?
Reflections on disadvantages of the use of free fatty acids as fuel for brain. J. Cereb. Blood Flow Metab. 2013,
33, 1493–1499.
- Panov, A.; Orynbayeva, Z.; Vavilin, V.; Lyakhovich, V. Fatty acids in energy metabolism of the Central
Nervous System. Biomed. Res. Int. 2014, 472459.
- Romano, A.; Koczwara, J.B.; Gallelli, C.A.; Vergara, D.; Di Bonaventura, M.V.M.; Gaetani, S.; Giudetti, A.M.
Fats for thoughts: An update on brain fatty acid metabolism. Int. J. Biochem. Cell Biol. 2017, 84, 40–45.
- Hoffman, J.M.; Soltow, Q.A.; Li, S.; Sidik, A.; Jones, D.P.; Promislow, D.E.L. Effects of age, sex, and genotype
on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. Aging Cell. 2014, 13, 596–604.
- Houtkooper, R.H.; Argmann, C.; Houten, S.M.; Cantó, C.; Jeninga, E.H.; Andreux, P.A.; Thomas, C.;
Doenlen, R.; Schoonjans, K.; Auwerx, J. The metabolic footprint of aging in mice. Sci. Rep. 2011, 1, 134.
- Gómez, L.A.; Heath, S.H.; Hagen, T.M. Acetyl-L-carnitine supplementation reverses the age-related decline
in carnitine palmitoyltransferase 1 (CPT1) activity in interfibrillar mitochondria without changing the
L-carnitine content in the rat heart. Mech. Ageing Dev. 2012, 133, 99–106.
- Lee, S.H.; Lee, S.K.; Paik, D.; Min, K.J. Overexpression of Fatty-Acid-β-Oxidation-Related Genes Extends the
Lifespan of Drosophila melanogaster. Oxid. Med. Cell Longev. 2012, 2012, 854502.
- Bruss, M.D.; Khambatta, C.F.; Ruby, M.A.; Aggarwal, I.; Hellerstein, M.K. Calorie restriction increases fatty
acid synthesis and whole body fat oxidation rates. Am. J. Physiol. 2010, 298, E108–E116.
- Xu, X.; Gopalacharyulu, P.; Seppanen-Laakso, T.; Ruskeepaa, A.L.; Aye, C.C.; Carson, B.P.; Mora, S.; Oresic, M.;
Teleman, A.A. Insulin signaling regulates fatty acid catabolism at the level of CoA activation. PloS Genet.
2012, 8, e1002478.
- Michalik, L.; Auwerx, J.; Berger, J.P.; Chatterjee, V.K.; Glass, C.K.; Gonzalez, F.J.; Grimaldi, P.A.; Kadowaki, T.;
Lazar, M.A.; O’Rahilly, S.; et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated
receptors. Pharmacol. Rev. 2006, 58, 726–741.
- Palanker, L.; Tennessen, J.M.; Lam, G.; Thummel, C.S. Drosophila HNF4 Regulates Lipid Mobilization and
b-Oxidation. Cell Metab. 2009, 9, 228–239.
- Guzman, M.; Blazquez, C. I